
Audit Report
Kita Inu
June 2023

Network BSC

Address 0x4bb5b7f0865322fd5b48d430e1a117235744769b

Audited by © cyberscope

Kita Inu Token Audit 1

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Passed

⬤ OCTD Transfers Contract's Tokens Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ ULTW Transfers Liquidity to Team Wallet Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

Kita Inu Token Audit 2

Table of Contents
Analysis 1
Table of Contents 2
Review 3

Audit Updates 3
Source Files 3

Findings Breakdown 5
Functions Analysis 6
Inheritance Graph 11
Flow Graph 12
Summary 13
Disclaimer 14
About Cyberscope 15

Kita Inu Token Audit 3

Review

Contract Name KitaInu

Compiler Version v0.8.16+commit.07a7930e

Optimization 200 runs

Explorer https://bscscan.com/address/0x4bb5b7f0865322fd5b48d43

0e1a117235744769b

Address 0x4bb5b7f0865322fd5b48d430e1a117235744769b

Network BSC

Symbol KITA

Decimals 18

Total Supply 1,000,000,000,000,000

Audit Updates

Initial Audit 25 May 2023

https://github.com/cyberscope-io/audits/blob/main/v1/kita/audit

.pdf

Corrected Phase 2 30 May 2023

Source Files

Filename SHA256

contracts/KitaINU.sol ebf31732852192f2b4626f58e1222882d90e657e9a1199f0ea927ea06cb

2a97c

https://bscscan.com/address/0x4bb5b7f0865322fd5b48d430e1a117235744769b
https://bscscan.com/address/0x4bb5b7f0865322fd5b48d430e1a117235744769b
https://github.com/cyberscope-io/audits/blob/main/v1/kita/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/v1/kita/audit.pdf

Kita Inu Token Audit 4

Findings Breakdown

⬤ Critical 0

⬤ Medium 0

⬤ Minor / Informative 0

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 0 0 0 0

Kita Inu Token Audit 5

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

IERC20 Interface

totalSupply External -

balanceOf External -

transfer External ✓ -

allowance External -

approve External ✓ -

transferFrom External ✓ -

Context Implementation

_msgSender Internal

Ownable Implementation Context

Public ✓ -

owner Public -

renounceOwnership Public ✓ onlyOwner

transferOwnership Public ✓ onlyOwner

_setOwner Private ✓

Kita Inu Token Audit 6

SafeMath Library

sub Internal

IUniswapV2Rou
ter01

Interface

factory External -

WETH External -

WETC External -

WHT External -

WROSE External -

WAVAX External -

addLiquidity External ✓ -

addLiquidityETH External Payable -

addLiquidityAVAX External Payable -

addLiquidityETC External Payable -

addLiquidityROSE External Payable -

swapExactETHForTokens External Payable -

IUniswapV2Rou
ter02

Interface IUniswapV2
Router01

swapExactTokensForETCSupportingFee
OnTransferTokens

External Payable -

swapExactTokensForAVAXSupportingFe
eOnTransferTokens

External Payable -

swapExactTokensForROSESupportingF
eeOnTransferTokens

External Payable -

swapExactTokensForETHSupportingFee
OnTransferTokens

External ✓ -

Kita Inu Token Audit 7

IUniswapV2Fac
tory

Interface

createPair External ✓ -

getPair External -

BaseToken Implementation

KitaInu Implementation IERC20,
Ownable,
BaseToken

Public ✓ -

name External -

symbol External -

decimals External -

totalSupply External -

balanceOf Public -

transfer External ✓ -

allowance External -

approve External ✓ -

transferFrom External ✓ -

increaseAllowance External ✓ -

decreaseAllowance External ✓ -

setNewRouter External ✓ onlyAuthorized

getCirculatingSupply Public -

totalFees External -

Kita Inu Token Audit 8

tokenFromReflection Public -

_transferBothExcluded Private ✓

excludeFromFee External ✓ onlyAuthorized

includeInFee External ✓ onlyAuthorized

lockTaxes External ✓ onlyAuthorized

unlockTaxes External ✓ onlyAuthorized

setLiquidityFeePercent External ✓ onlyAuthorized

setCharityFeePercent External ✓ onlyAuthorized

setMarketingFeePercent External ✓ onlyAuthorized

setBurnFeePercent External ✓ onlyAuthorized

setCharityAddress External ✓ onlyAuthorized

setMarketingAddress External ✓ onlyAuthorized

validateTaxes Internal

setSwapAndLiquifyEnabled External ✓ onlyAuthorized

External Payable -

_getValues Private

_getTValues Private

_getRValues Private

_getRate Private

_getCurrentSupply Private

_takeLiquidity Private ✓

_takeCharityFee Private ✓

_takeMarketingFee Private ✓

Kita Inu Token Audit 9

_takeBurnFee Private ✓

_reflectFee Private ✓

calculateTaxFee Private

calculateLiquidityFee Private

calculateCharityFee Private

calculateMarketingFee Private

calculateBurnFee Private

removeAllFee Private ✓

restoreAllFee Private ✓

getIsExcludedFromFee Public -

_approve Private ✓

_transfer Private ✓

swapAndLiquify Private ✓ lockTheSwap

swapTokensForEth Private ✓

addLiquidity Private ✓

_tokenTransfer Private ✓

_transferStandard Private ✓

_transferToExcluded Private ✓

_transferFromExcluded Private ✓

Kita Inu Token Audit 10

Inheritance Graph

Kita Inu Token Audit 11

Flow Graph

Kita Inu Token Audit 12

Summary
Kita Inu contract implements a token mechanism. This audit investigates security issues,

business logic concerns, and potential improvements. Kita Inu is an interesting project that

has a friendly and growing community. The Smart Contract analysis reported no compiler

errors or critical issues. The contract Owner can access some admin functions that can not

be used in a malicious way to disturb the users’ transactions. There is also a limit of max

20% fees.

Kita Inu Token Audit 13

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

Kita Inu Token Audit 14

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io

https://www.cyberscope.io

Audit Report
Kita Inu
May 2023

Network BSC

Address 0xD8CC2D4fE120506dF41BC83d5a061875660d6f63

Audited by © cyberscope

Kita Inu Token Audit 1

Table of Contents
Table of Contents 1
Review 3

Audit Updates 3
Source Files 3

Findings Breakdown 4
Analysis 5
Diagnostics 6

MLF - Misleading Liquidity Functionality 7
Description 7
Recommendation 7

TFI - Transfer Fees Inconsistency 8
Description 8
Recommendation 9

MU - Modifiers Usage 10
Description 10
Recommendation 10

RSW - Redundant Storage Writes 11
Description 11
Recommendation 11

MSE - Missing Solidity Events 13
Description 13
Recommendation 13

RCV - Redundant Constant Variable 15
Description 15
Recommendation 15

IDI - Immutable Declaration Improvement 16
Description 16
Recommendation 16

L02 - State Variables could be Declared Constant 17
Description 17
Recommendation 17

L04 - Conformance to Solidity Naming Conventions 18
Description 18
Recommendation 18

L05 - Unused State Variable 20
Description 20
Recommendation 20

L16 - Validate Variable Setters 21
Description 21

Kita Inu Token Audit 2

Recommendation 21
L19 - Stable Compiler Version 22

Description 22
Recommendation 22

Functions Analysis 23
Inheritance Graph 25
Flow Graph 26
Summary 27
Disclaimer 28
About Cyberscope 29

Kita Inu Token Audit 3

Review

Contract Name KITA

Compiler Version v0.8.18+commit.87f61d96

Optimization 200 runs

Explorer https://bscscan.com/address/0xd8cc2d4fe120506df41bc83d5a

061875660d6f63

Address 0xd8cc2d4fe120506df41bc83d5a061875660d6f63

Network BSC

Symbol KITA

Decimals 18

Total Supply 1.000.000.000

Audit Updates

Initial Audit 25 May 2023

Source Files

Filename SHA256

KITA.sol 94bb941763cfe40df1baf355e96b5bcfdfb5d4ccc6453fe871fea6922a09

c6cf

https://bscscan.com/address/0xd8cc2d4fe120506df41bc83d5a061875660d6f63
https://bscscan.com/address/0xd8cc2d4fe120506df41bc83d5a061875660d6f63

Kita Inu Token Audit 4

Findings Breakdown

⬤ Critical 2

⬤ Medium 0

⬤ Minor / Informative 10

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 2 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 10 0 0 0

Kita Inu Token Audit 5

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Passed

⬤ OCTD Transfers Contract's Tokens Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ ULTW Transfers Liquidity to Team Wallet Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

Kita Inu Token Audit 6

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ TFI Transfer Fees Inconsistency Unresolved

⬤ MLF Misleading Liquidity Functionality Unresolved

⬤ MU Modifiers Usage Unresolved

⬤ RSW Redundant Storage Writes Unresolved

⬤ MSE Missing Solidity Events Unresolved

⬤ RCV Redundant Constant Variable Unresolved

⬤ IDI Immutable Declaration Improvement Unresolved

⬤ L02 State Variables could be Declared Constant Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L05 Unused State Variable Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L19 Stable Compiler Version Unresolved

Kita Inu Token Audit 7

MLF - Misleading Liquidity Functionality

Criticality Critical

Location KITA.sol#L29,134,155

Status Unresolved

Description

The contract implements a liquidity functionality, indicating that it intends to interact with

liquidity pools. However, there is no implementation or function present that enables users

or the contract itself to add liquidity to the desired pool. Additionally, the tokens that are

sent to the pancakeSwapRouter are locked there and the pancakeSwapRouter

address does not implement any method to be able to execute the

updatePancakeSwapRouter() .

address private pancakeSwapRouter =

address(0x10ED43C718714eb63d5aA57B78B54704E256024E);

uint256 liquidityTax = taxAmount - burnTax - charityTax - marketingTax;

if (liquidityTax > 0) {

_transferToAddress(sender, pancakeSwapRouter, liquidityTax);

}

function updatePancakeSwapRouter(address newRouter) external {

require(msg.sender == pancakeSwapRouter, "Caller is not the current

PancakeSwap router");

pancakeSwapRouter = newRouter;

}

Recommendation

The contract should revisit the liquidity functionality since sending tokens to the router

address does not have any effect.

Kita Inu Token Audit 8

TFI - Transfer Fees Inconsistency

Criticality Critical

Location KITA.sol#L94,109

Status Unresolved

Description

The contract incorporates a fee mechanism to deduct a certain percentage from the

sender's transaction amount. However, after deducting the fee, the contract proceeds to

transfer the tax distributions from the sender to designated addresses by utilizing the

_transferToAddress method. This double deduction of amounts results in an

inconsistency between the actual transferred amount and the amount the sender expects to

send.

Kita Inu Token Audit 9

function _transfer(address sender, address recipient, uint256 amount) private

{

...

if (taxAmount > 0) {

_handleTax(sender, taxAmount);

}

...

}

function _handleTax(address sender, uint256 taxAmount) private {

uint256 burnTax = (taxAmount * burnTaxPercentage) / taxPercentage;

uint256 charityTax = (taxAmount * charityTaxPercentage) / taxPercentage;

uint256 marketingTax = (taxAmount * marketingTaxPercentage) /

taxPercentage;

if (burnTax > 0) {

_transferToAddress(sender, burnAddress, burnTax);

}

if (charityTax > 0) {

_transferToAddress(sender, charityWallet, charityTax);

}

if (marketingTax > 0) {

_transferToAddress(sender, marketingWallet, marketingTax);

}

uint256 liquidityTax = taxAmount - burnTax - charityTax - marketingTax;

if (liquidityTax > 0) {

_transferToAddress(sender, pancakeSwapRouter, liquidityTax);

}

}

Recommendation

It is recommended to review and revise the fee and tax distribution mechanisms to avoid

double deductions from the sender's account. Consider implementing a streamlined

approach where the fee and tax distribution are deducted only once, ensuring the

transferred amount remains consistent with the sender's intent.

Kita Inu Token Audit 10

MU - Modifiers Usage

Criticality Minor / Informative

Location KITA.sol#L160,165,170

Status Unresolved

Description

The contract is using repetitive statements on some methods to validate some

preconditions. In Solidity, the form of preconditions is usually represented by the modifiers.

Modifiers allow you to define a piece of code that can be reused across multiple functions

within a contract. This can be particularly useful when you have several functions that

require the same checks to be performed before executing the logic within the function.

require(msg.sender == deployerWallet || msg.sender ==

developerWallet, "Caller is not authorized");

Recommendation

The team is advised to use modifiers since it is a useful tool for reducing code duplication

and improving the readability of smart contracts. By using modifiers to perform these

checks, it reduces the amount of code that is needed to write, which can make the smart

contract more efficient and easier to maintain.

Kita Inu Token Audit 11

RSW - Redundant Storage Writes

Criticality Minor / Informative

Location KITA.sol#L154,159,164,169

Status Unresolved

Description

There are code segments that could be optimized. A segment may be optimized so that it

becomes a smaller size, consumes less memory, executes more rapidly, or performs fewer

operations.

The contract updates variables even if its current state is the same as the one passed as an

argument. As a result, the contract performs redundant storage writes.

function updatePancakeSwapRouter(address newRouter) external {
require(msg.sender == pancakeSwapRouter, "Caller is not

the current PancakeSwap router");
pancakeSwapRouter = newRouter;

}

function updateExemptWallet(address wallet, bool isExempt)
external {

require(msg.sender == deployerWallet || msg.sender ==
developerWallet, "Caller is not authorized");

exemptWallets[wallet] = isExempt;
}

function enableTax() external {
require(msg.sender == deployerWallet || msg.sender ==

developerWallet, "Caller is not authorized");
isTaxEnabled = true;

}

function disableTax() external {
require(msg.sender == deployerWallet || msg.sender ==

developerWallet, "Caller is not authorized");
isTaxEnabled = false;

}

Recommendation

Kita Inu Token Audit 12

The team is advised to take these segments into consideration and rewrite them so the

runtime will be more performant. That way it will improve the efficiency and performance of

the source code and reduce the cost of executing it.

Kita Inu Token Audit 13

MSE - Missing Solidity Events

Criticality Minor / Informative

Location KITA.sol#L154,159,164,169

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

function updatePancakeSwapRouter(address newRouter) external {
require(msg.sender == pancakeSwapRouter, "Caller is not the

current PancakeSwap router");
pancakeSwapRouter = newRouter;

}

function updateExemptWallet(address wallet, bool isExempt)
external {

require(msg.sender == deployerWallet || msg.sender ==
developerWallet, "Caller is not authorized");

exemptWallets[wallet] = isExempt;
}

function enableTax() external {
require(msg.sender == deployerWallet || msg.sender ==

developerWallet, "Caller is not authorized");
isTaxEnabled = true;

}

function disableTax() external {
require(msg.sender == deployerWallet || msg.sender ==

developerWallet, "Caller is not authorized");
isTaxEnabled = false;

}

Recommendation

Kita Inu Token Audit 14

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

Kita Inu Token Audit 15

RCV - Redundant Constant Variable

Criticality Minor / Informative

Location KITA.sol#L37

Status Unresolved

Description

There are code segments that could be optimized. A segment may be optimized so that it

becomes a smaller size, consumes less memory, executes more rapidly, or performs fewer

operations.

The liquidityTaxPercentage variable is not used in the contracts implementation.

Hence, it is redundant.

uint256 private constant liquidityTaxPercentage = 5;

Recommendation

The team is advised to take these segments into consideration and rewrite them so the

runtime will be more performant. That way it will improve the efficiency and performance of

the source code and reduce the cost of executing it. It is recommended to remove

redundant variables.

Kita Inu Token Audit 16

IDI - Immutable Declaration Improvement

Criticality Minor / Informative

Location KITA.sol#L41,42,43,44

Status Unresolved

Description

The contract is using variables that initialize them only in the constructor. The other

functions are not mutating the variables. These variables are not defined as immutable .

name
symbol
decimals
_totalSupply

Recommendation

By declaring a variable as immutable, the Solidity compiler is able to make certain

optimizations. This can reduce the amount of storage and computation required by the

contract, and make it more gas-efficient.

Kita Inu Token Audit 17

L02 - State Variables could be Declared Constant

Criticality Minor / Informative

Location KITA.sol#L26,27,28,29,30

Status Unresolved

Description

State variables can be declared as constant using the constant keyword. This means that

the value of the state variable cannot be changed after it has been set. Additionally, the

constant variables decrease gas consumption of the corresponding transaction.

address private burnAddress =
address(0x000000000000000000000000000000000000dEaD)
address private charityWallet =
address(0xA67dE2b8c36848802b711D551c23935d987ABBEd)
address private marketingWallet =
address(0x9488cA8E59D7D68a63babB98Cb722AA7fcda3dfc)
address private deployerWallet =
address(0x31DaFbfb3f96f9E85518B6F2Afa508B76CE50386)
address private developerWallet =

address(0xefACd388769531AEa7546aF7A411fEA40cA434B2)

Recommendation

Constant state variables can be useful when the contract wants to ensure that the value of a

state variable cannot be changed by any function in the contract. This can be useful for

storing values that are important to the contract's behavior, such as the contract's address

or the maximum number of times a certain function can be called. The team is advised to

add the constant keyword to state variables that never change.

Kita Inu Token Audit 18

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location KITA.sol#L32,33,34,35,36

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

uint256 private constant taxPercentage = 8
uint256 private constant liquidityTaxPercentage = 5
uint256 private constant burnTaxPercentage = 1
uint256 private constant charityTaxPercentage = 1
uint256 private constant marketingTaxPercentage = 1

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Kita Inu Token Audit 19

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions

Kita Inu Token Audit 20

L05 - Unused State Variable

Criticality Minor / Informative

Location KITA.sol#L33

Status Unresolved

Description

An unused state variable is a state variable that is declared in the contract, but is never

used in any of the contract's functions. This can happen if the state variable was originally

intended to be used, but was later removed or never used.

Unused state variables can create clutter in the contract and make it more difficult to

understand and maintain. They can also increase the size of the contract and the cost of

deploying and interacting with it.

uint256 private constant liquidityTaxPercentage = 5

Recommendation

To avoid creating unused state variables, it's important to carefully consider the state

variables that are needed for the contract's functionality, and to remove any that are no

longer needed. This can help improve the clarity and efficiency of the contract.

Kita Inu Token Audit 21

L16 - Validate Variable Setters

Criticality Minor / Informative

Location KITA.sol#L152

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

pancakeSwapRouter = newRouter

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

Kita Inu Token Audit 22

L19 - Stable Compiler Version

Criticality Minor / Informative

Location KITA.sol#L2

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.0;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

Kita Inu Token Audit 23

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

IERC20 Interface

totalSupply External -

balanceOf External -

transfer External ✓ -

allowance External -

approve External ✓ -

transferFrom External ✓ -

KITA Implementation IERC20

Public ✓ -

totalSupply Public -

balanceOf Public -

transfer Public ✓ -

allowance Public -

approve Public ✓ -

transferFrom Public ✓ -

increaseAllowance Public ✓ -

decreaseAllowance Public ✓ -

Kita Inu Token Audit 24

_transfer Private ✓

_handleTax Private ✓

_transferToAddress Private ✓

_approve Private ✓

updatePancakeSwapRouter External ✓ -

updateExemptWallet External ✓ -

enableTax External ✓ -

disableTax External ✓ -

Kita Inu Token Audit 25

Inheritance Graph

Kita Inu Token Audit 26

Flow Graph

Kita Inu Token Audit 27

Summary
Kita Inu contract implements a token mechanism. This audit investigates security issues,

business logic concerns, and potential improvements. Kita Inu is an interesting project that

has a friendly and growing community. The Smart Contract analysis reported no compiler

errors or critical issues. The Contract Owner can access some admin functions that can not

be used in a malicious way to disturb the users’ transactions. There is also a fixed fee of 8%

fees. Additionally, the taxes can be disabled or enabled.

Kita Inu Token Audit 28

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

Kita Inu Token Audit 29

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io

https://www.cyberscope.io

