
Audit Report
March, 2022

For

QuillAudits

https://audits.quillhash.com/smart-contract-audit

Contents

Overview

Scope of Audit

Checked Vulnerabilities

Techniques and Methods

Issue Categories

Functional Testing Results

Issues Found

High Severity Issues

Medium Severity Issues

Low Severity Issues

Informational Issues

 1. Old version of Solidity

 2. Dead-code/Unused functions

 3. Token Decimals

Closing Summary

01

01

02

03

04

05

06

06

06

06

06

06

06

07

08

01audits.quillhash.com

MetaWhale - Audit ReportQuillAudits

A blockchain-based virtual Gaming and NFT Metaverse. A virtual gaming
platform allows players to build and monetize their gaming experiences. It
is working on the Binance Blockchain using MTW’s utility Token.

Overview

MetaWhale

The scope of this audit was to analyze MetaWhale smart contract’s for
quality, security, and correctness.

MetaWhale Contract:
Contract Address 0xd3ac199e6e6a1668ed6566b6f6dcdf7641868731 |
BscScan

Scope of Audit

https://bscscan.com/address/0xd3ac199e6e6a1668ed6566b6f6dcdf7641868731#code

02audits.quillhash.com

We have scanned the smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that we considered:

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Malicious libraries

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

ERC20 transfer() does not return boolean

ERC20 approve() race

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Using block.timestamp

Multiple Sends

Using SHA3

Using suicide

Using throw

Using inline assembly

MetaWhale - Audit ReportQuillAudits

03audits.quillhash.com

Techniques and Methods
Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour
mentioned in the whitepaper.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the
smart contracts.

Structural Analysis
In this step, we have analysed the design patterns and structure of smart
contracts. A thorough check was done to ensure the smart contract is
structured in a way that will not result in future problems.

Static Analysis
Static analysis of smart contracts was done to identify contract
vulnerabilities. In this step, a series of automated tools are used to test the
security of smart contracts.

Code Review / Manual Analysis
Manual analysis or review of code was done to identify new vulnerabilities
or verify the vulnerabilities found during the static analysis. Contracts were
completely manually analysed, their logic was checked and compared
with the one described in the whitepaper. Besides, the results of the
automated analysis were manually verified.

Gas Consumption
In this step, we have checked the behaviour of smart contracts in
production. Checks were done to know how much gas gets consumed
and the possibilities of optimization of code to reduce gas consumption.

Tools and Platforms used for Audit
Mythril, Slither, Surya, Solhint.

MetaWhale - Audit ReportQuillAudits

04audits.quillhash.com

Issue Categories
Every issue in this report has been assigned to a severity level. There are
four levels of severity, and each of them has been explained below.

High

Risk-level Description

Medium

Low

Informational

A high severity issue or vulnerability means that your smart

contract can be exploited. Issues on this level are critical to the

smart contract’s performance or functionality, and we

recommend these issues be fixed before moving to a live

environment.

The issues marked as medium severity usually arise because of

errors and deficiencies in the smart contract code. Issues on

this level could potentially bring problems, and they should still

be fixed.

Low-level severity issues can cause minor impact and
or are just warnings that can remain unfixed for now.
It would be better to fix these issues at some point in
the future.

These are severity issues that indicate an
improvement request, a general question, a cosmetic
or documentation error, or a request for information.
There is low-to-no impact.

Number of issues per severity

Open

Type High

Closed

Acknowledged

Low

0 0

0

0

0

0

00

0

3

0

0

Medium Informational

MetaWhale - Audit ReportQuillAudits

05audits.quillhash.com

MetaWhale - Audit ReportQuillAudits

Functional Testing Results

Some of the tests performed are mentioned below:

Should be able to transfer tokens.
Should be able to approve tokens.
Should be able to spend allowed tokens.
Should be able to increase and decrease allowance.
Only the owner can mint tokens to the owner address.
Reverts if spender exceeds allowance while transferring allowed tokens.
Reverts if the transfer amount exceeds the current balance.
Reverts to zero address transfers.
Should be able to burn tokens.

06audits.quillhash.com

MetaWhale - Audit ReportQuillAudits

Issues Found – Code Review / Manual Testing

High severity issues

1.

2.

Old version of Solidity

Dead-code/Unused functions

This contract is using solidity version 0.5.16, solc frequently releases new
compiler versions. Using an old version prevents access to new Solidity
security checks.

[#L492] _burnFrom internal function is unused in contract.[#L460] _burn
function is getting called in _burnFrom but there's no function which
calls this function. Hence both the functions are unused.

Recommendation
Use the latest compiler version in order to avoid bugs introduced in
older versions.

No issues found

No issues found

Medium severity issues

No issues found

Low severity issues

Informational issues

Status: Acknowledged

07audits.quillhash.com

MetaWhale - Audit ReportQuillAudits

3. Token Decimals

Contract is using 8 decimals for tokens.

Here 1 token would be 1*(10**8) = 100000000 Wei.

It may happen that any other smart contract uses/accepts this token for
some reason.

That smart contract calculates the token amount sent by the user
assuming its 18 decimal token, which can result in unwanted outcomes.

Eg: care needs to be taken in this type of scenario.
1. User sends 1 token (“1*(10**8)” in this case) to a smart contract.
2. The smart contract which accepts this token checks the token
 amount sent by User which was 1*(10**8) = 100000000
3. While calculating amount sent by the User, smart contract uses 18
 decimals and expects 1 token sent to be 1*(10**18) =
1000000000000000000

In this case this condition will fail since token amount sent by User is
100000000 i.e 1*(10**8) and not 1*(10**18)

Recommendation
1. In this case tokens decimals are only used for representation
 purposes,but we recommend reviewing business logic.
2. In cases like sending,approving or integrating token contract’s with
 other functionality, care needs to be taken according to logic.

Recommendation
Consider removing unused functions.

Status: Acknowledged

08audits.quillhash.com

Closing Summary
No Major Issues Found During the Audit,only Some Informational issues
were discovered, which are Acknowledged by the Metawhale Team.

MetaWhale - Audit ReportQuillAudits

09audits.quillhash.com

Disclaimer
QuillAudits smart contract audit is not a security warranty, investment
advice, or an endorsement of the MetaWhale platform. This audit does not
provide a security or correctness guarantee of the audited smart contracts.

The statements made in this document should not be interpreted as
investment or legal advice, nor should its authors be held accountable for
decisions made based on them. Securing smart contracts is a multistep
process. One audit cannot be considered enough. We recommend that the
MetaWhale Team put in place a bug bounty program to encourage further
analysis of the smart contract by other third parties.

MetaWhale - Audit ReportQuillAudits

Audit Report
March, 2022

For

audits.quillhash.com

audits@quillhash.com

Canada, India, Singapore, United Kingdom

QuillAudits

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit

